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Abstract

Large language models (LLMs) face significant
copyright and intellectual property challenges
as the cost of training increases and model
reuse becomes prevalent. While watermark-
ing techniques have been proposed to protect
model ownership, they may not be robust to
continue training and development, posing se-
rious threats to model attribution and copyright
protection. This work introduces a simple yet
effective approach for robust LLM fingerprint-
ing based on intrinsic model characteristics.
We discover that the standard deviation distri-
butions of attention parameter matrices across
different layers exhibit distinctive patterns that
remain stable even after extensive continued
training. These parameter distribution signa-
tures serve as robust fingerprints that can reli-
ably identify model lineage and detect poten-
tial copyright infringement. Our experimen-
tal validation across multiple model families
demonstrates the effectiveness of our method
for model authentication. Notably, our investi-
gation uncovers evidence that a recently Pangu
Pro MoE model released by Huawei is derived
from Qwen-2.5 14B model through upcycling
techniques rather than training from scratch,
highlighting potential cases of model plagia-
rism, copyright violation, and information fab-
rication. These findings underscore the critical
importance of developing robust fingerprinting
methods for protecting intellectual property in
large-scale model development and emphasize
that deliberate continued training alone is insuf-
ficient to completely obscure model origins.

1 Introduction

The rapid advancement of large language models
(LLMs) has fundamentally transformed the arti-
ficial intelligence landscape, with training costs
reaching millions of dollars and requiring sub-
stantial computational resources (Hoffmann et al.,
2022; Touvron et al., 2023a,b; Liu et al., 2024).
As these models become increasingly valuable as-

sets, protecting intellectual property rights and pre-
venting unauthorized model reuse has emerged as
a critical challenge for both commercial entities
and research institutions (Samuelson, 2023; Zeng
et al., 2024). The substantial investment required
for training state-of-the-art LLMs creates strong in-
centives for model theft, unauthorized copying, and
derivative works that may infringe upon original
creators’ rights (Yao et al., 2024).

Traditional approaches to model protection
have primarily relied on watermarking tech-
niques embedded during training or inference
phases (Kirchenbauer et al., 2023; Kuditipudi et al.,
2023). However, these methods face significant
vulnerabilities when confronted with continued
training, fine-tuning, or model modification. Ad-
versaries can potentially remove or obscure water-
marks through additional training iterations, mak-
ing conventional protection mechanisms insuffi-
cient for robust copyright enforcement. This limi-
tation has created an urgent need for more resilient
fingerprinting methods that can survive various
forms of model manipulation and adaptation.

In this work, we propose a simple yet effec-
tive approach to LLM fingerprinting that leverages
intrinsic parameter characteristics rather than ex-
ternally imposed watermarks. Our key insight is
that the simple statistical properties of attention
parameter matrices, i.e., their standard deviation
distributions across layers, form distinctive signa-
tures that are remarkably stable across the training
process. Unlike traditional watermarks that can
be intentionally targeted for removal, these intrin-
sic fingerprints emerge naturally from the model’s
architecture and training dynamics, making them
significantly more difficult to erase through con-
tinued training or model modification, even from
dense model to MoE. All we need is loading model
checkpoints and simply apply torch.std() to dif-
ferent parameter matrices, then we can establish
model lineage and detect potential cases of unau-



thorized model derivation with high confidence.
To demonstrate the practical importance of this re-
search, we present a compelling case study involv-
ing the recently released Pangu Pro MoE model by
Huawei1 and the Qwen-2.5 14B model2. Our analy-
sis provides evidence suggesting that the Pangu Pro
MoE model may have been derived from Qwen-
2.5 14B through upcycling techniques, highlight-
ing real-world instances of potential copyright in-
fringement in the current LLM ecosystem and se-
rious information fabrication in the corresponding
technique report (Tang et al., 2025). This find-
ing underscores the immediate relevance of robust
fingerprinting methods for protecting intellectual
property in large-scale model development. The
contributions of this work extend beyond techni-
cal methodology to address fundamental questions
about model ownership, attribution, and intellectual
property protection in the age of foundation models.
As the LLM landscape continues to evolve rapidly,
establishing reliable methods for model authentica-
tion becomes increasingly critical for maintaining
innovation incentives and protecting the substantial
investments required for model development.

2 Related Work

The rapid evolution of Large Language Models
(LLMs) has brought the challenge of protecting
intellectual property (IP) to the forefront (He et al.,
2022). As models, both proprietary and open-
source, represent significant investment in terms of
data, computation, and human expertise, there is a
critical need for reliable methods to verify model
ownership and trace unauthorized distribution. The
primary approaches in the literature for this purpose
are LLM watermarking and fingerprinting. How-
ever, a critical examination reveals their inherent
fragility, particularly when confronted with com-
mon model adaptation techniques like fine-tuning
and parameter modification.

2.1 Watermarking for Provenance Tracking

Watermarking schemes aim to proactively embed
a hidden, detectable signal into the output gener-
ated by an LLM (Zhao et al., 2023). The goal is
to allow a model owner to later verify if a piece
of text was generated by their model. A popu-
lar category of methods involves modifying the
model’s output probability distribution during de-

1https://gitcode.com/ascend-tribe/pangu-pro-moe-model
2https://huggingface.co/Qwen/Qwen2.5-14B

coding. For instance, a secret key can be used to
pseudo-randomly partition the vocabulary into a
"greenlist" and a "redlist," where the generation of
greenlisted tokens is subtly encouraged (Kirchen-
bauer et al., 2023). By analyzing a suspect text
for a statistically significant presence of greenlisted
tokens, one can trace its origin.

Despite their ingenuity, these generative water-
marking schemes are fundamentally brittle. Their
reliance on a specific output distribution makes
them highly susceptible to any process that alters
this distribution. Fine-tuning is a primary adversary
in this context. Even brief continued training on
a small, domain-specific dataset can significantly
shift the model’s weights and, consequently, its
next-token probabilities, effectively erasing or over-
writing the embedded watermark (Kirchenbauer
et al., 2023). The signal, being statistical in nature,
is simply too fragile to survive the gradient-based
updates inherent to the fine-tuning process.

Furthermore, these methods are vulnerable to
simple post-processing or paraphrasing attacks. An
adversary can use another off-the-shelf LLM to
rephrase the watermarked output. This process pre-
serves the semantic content but completely disrupts
the token-level statistical patterns that form the wa-
termark, rendering it undetectable (Sadasivan et al.,
2023). Other attacks, such as spoofing, have also
demonstrated the ability to frame a non-malicious
provider by mimicking their watermark, casting
further doubt on the reliability of this approach for
robust IP claims (Zhao et al., 2023).

2.2 Fingerprinting for Model Identification
In contrast to watermarking, which marks the out-
put, fingerprinting aims to identify the model it-
self (Lyu et al., 2022; Sun et al., 2024). These
techniques seek to discover or implant unique char-
acteristics within the model that serve as an identi-
fier. Fingerprinting can be passive, by identifying
unique stylistic quirks or artifacts of a model, or
active, by intentionally embedding a "backdoor"
signal. Active methods often involve training the
model on a carefully crafted set of "trigger" in-
puts that elicit a specific, secret output (e.g., a spe-
cific phrase or identifier). The presence of this
behavior in a suspect model serves as the finger-
print (Lyu et al., 2022). Researchers also pro-
posed methods based on fingerprinting features ex-
tracted from the parameters of LLMs (Zeng et al.,
2024). However, like watermarking, existing fin-
gerprinting schemes struggle to withstand long



continued (pre)training and deliberate model mod-
ification (Han et al., 2024), and many methods
even become invalid when model architectures are
changed by the attacker. In summary, while ex-
isting watermarking and fingerprinting techniques
provide a foundational framework for LLM IP pro-
tection, their core assumptions are often violated
in real-world scenarios. Their sensitivity to modifi-
cations in model weights and output distributions
renders them largely ineffective against adversaries
who can perform continue training, model distilla-
tion, upcycling or even simple paraphrasing attacks.
This highlights a critical gap in the literature: the
need for a verification method that is intrinsically
tied to the core, functional identity of the model
and is demonstrably resilient to such modifications.
Our work aims to address this challenge.

3 Methodology

3.1 Problem Definition

We formalize the problem of LLM lineage detec-
tion as follows: Given two large language models
A and B with their respective parameter weights
θA and θB , our objective is to determine whether
model A has been derived from model B through
continued training, fine-tuning, or other modifica-
tion techniques, rather than being trained indepen-
dently from scratch. This binary classification prob-
lem is critical for intellectual property protection
and model attribution in scenarios where organiza-
tions may claim independent development while
actually building upon existing foundation models.

3.2 Parameter Distribution Fingerprinting

Our approach leverages the intrinsic statistical prop-
erties of attention mechanism parameters to create
robust fingerprints for model lineage detection. For
each transformer layer l in a given model, we ex-
tract the query (Ql), key (Kl), value (Vl), and out-
put (Ol) projection matrices from the multi-head
attention mechanism.3

For each attention matrix M ∈ Ql,Kl, Vl, Ol at
layer l, we compute the standard deviation of all
parameters:

σM
l = std(Ml) (1)

3We prefer to use attention parameters because vector pa-
rameters such as layer norm and bias are easy to change and
manipulate. FFN parameters may also be suboptimal choices
because they can be directly modified when doing upcycling.

where std(·) denotes the standard deviation oper-
ation across all elements of the matrix. This process
yields four sequences of standard deviation values
across all L layers of the model:

SQ = [σQ
1 , σ

Q
2 , . . . , σ

Q
L ] (2)

SK = [σK
1 , σK

2 , . . . , σK
L ] (3)

SV = [σV
1 , σ

V
2 , . . . , σ

V
L ] (4)

SO = [σO
1 , σ

O
2 , . . . , σ

O
L ] (5)

To enable meaningful comparisons between
models of different scales and architectures (also
aiming to be robust to parameter rescale), we nor-
malize each sequence to have zero mean and unit
variance. For each sequence SM , the normalized
sequence ŜM is computed as:

ŜM =
SM − µ(SM )

σ(SM )
(6)

where µ(SM ) and σ(SM ) represent the mean
and standard deviation of the sequence SM , respec-
tively. This normalization procedure removes scale-
dependent variations while preserving the relative
patterns of parameter standard deviations across
layers, which we hypothesize to be characteris-
tic signatures of model lineage. In addition, our
method is also robust to linear projection and di-
mension permutation.

3.3 Lineage Detection
Given two models A and B, we compute
their respective normalized fingerprint sequences
ŜQ
A, Ŝ

K
A , ŜV

A , Ŝ
O
A and ŜQ

B, Ŝ
K
B , ŜV

B , Ŝ
O
B . The simi-

larity between models is then assessed by comput-
ing the correlation coefficients between correspond-
ing sequences:

ρM = corr(ŜM
A , ŜM

B ). (7)

Models exhibiting high correlation across multiple
attention matrix types are considered to share poten-
tial lineage relationships, indicating that one model
may have been derived from the other through con-
tinued training or modification processes. For mod-
els with identical layer counts, the correlation co-
efficients can be computed directly between corre-
sponding normalized sequences. However, when
comparing models with different numbers of layers,
we employ interpolation techniques to enable mean-
ingful comparison. Given two models A and B with
LA and LB layers respectively, where LA ̸= LB ,



we use linear interpolation to align the sequences to
a common length. Specifically, for each attention
matrix type M , we interpolate the shorter sequence
to match the length of the longer sequence. Let
ŜM

short and ŜM
long denote the normalized sequences

from the model with fewer and more layers, respec-
tively. We define index mappings:

ishort = [0, 1, 2, . . . , Lshort − 1], (8)

itarget = linspace(0, Lshort − 1, Llong). (9)

The interpolated sequence ŜM
interp is computed using

linear interpolation:

ŜM
interp = interp1d(ishort, Ŝ

M
short, itarget), (10)

where interp1d(·) represents the linear interpola-
tion function. The correlation coefficient is then
computed between the interpolated sequence and
the longer model’s sequence:

ρM = corr(ŜM
interp, Ŝ

M
long). (11)

This interpolation approach assumes that the layer-
wise evolution of parameter standard deviations fol-
lows a smooth pattern that can be meaningfully ap-
proximated through linear interpolation, enabling
robust comparison across models with different
depths while preserving the essential distributional
characteristics that serve as lineage fingerprints.

4 Experiments

4.1 Experimental Setup

Our experiments were conducted on a diverse col-
lection of large language models spanning multi-
ple architectural families and organizations. The
model selection includes popular open-source mod-
els from different lineages to ensure comprehensive
coverage of the current LLM landscape. Specif-
ically, we analyzed models from the Qwen se-
ries (Qwen2.5-7B, Qwen2.5-14B, Qwen2.5-32B,
Qwen2.5-72B (Team, 2024), Qwen3-4B, Qwen3-
8B, Qwen3-14B, Qwen3-30A3B (Yang et al.,
2025)), Llama family (Llama-3.1-8B, Llama-3.1-
70B (Grattafiori et al., 2024), and Llama-3.1-
Nemotron-70B-Instruct (Bercovich et al., 2025)),
additional MoE models (OLMoE-7BA1B (Muen-
nighoff et al., 2024), Qwen1.5-MoE-A2.7B (Team,
2024)), and the Pangu Pro MoE (Tang et al., 2025)
model released by Huawei.

For each model, we extracted the complete pa-
rameter tensors for the query (Q), key (K), value
(V), and output (O) projection matrices from all
transformer layers. The parameter extraction was
performed using the models’ official checkpoints
and configurations to ensure accuracy. We com-
puted the standard deviation of each attention ma-
trix at every layer, followed by normalization to
enable cross-model comparison as described in
our methodology section. The correlation analy-
sis was conducted using Pearson correlation coeffi-
cients, with statistical significance assessed through
p-value calculations. For models with different
layer counts, we employed linear interpolation to
align sequence lengths before correlation compu-
tation. All experiments were conducted with full
fp32 precision to maintain numerical accuracy.

4.2 Cross-Family Model Analysis
Figure 1 presents the normalized standard devi-
ation patterns of attention matrices across repre-
sentative models from different families. The vi-
sualization reveals several critical insights about
the distributional signatures of transformer models.
Each model family demonstrates distinct charac-
teristic patterns that appear to encode fundamental
properties of their training procedures and architec-
tural designs.

The Llama-3.1-8B model exhibits a distinctive
pattern with relatively stable Q and K projections
across layers, while showing more variation in V
and O projections, particularly in the deeper lay-
ers. This pattern is consistent with the Llama ar-
chitecture’s specific attention mechanism design
and training dynamics. The Qwen3-14B model dis-
plays a different signature, with more pronounced
variations in the Q projection and smoother transi-
tions in the K and V projections. OLMoE-7BA1B,
being a mixture-of-experts model, shows yet an-
other unique pattern characterized by more dra-
matic fluctuations across all projection types, likely
reflecting the routing dynamics and expert special-
ization inherent in MoE architectures. These varia-
tions suggest that the distributional signatures cap-
ture not only the model’s training history but also
fundamental architectural characteristics.

Most strikingly, Pangu and Qwen2.5-14B exhibit
nearly identical patterns across all four attention
matrix types. The curves overlay so precisely that
they are often indistinguishable in the visualization.
This similarity is extraordinary given that these
models supposedly represent independent de-
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Figure 1: Normalized standard deviation patterns of attention matrices (Q, K, V, O) across different model families.
The figure shows distinctive distributional signatures for each model family, with Pangu and Qwen2.5-14B exhibiting
remarkably similar patterns despite their different origins and architectures.
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Figure 2: Correlation matrices for three key models
(Qwen3-30A3B, Pangu, Qwen2.5-14B) across different
attention matrix types. The exceptional correlation be-
tween Pangu and Qwen2.5-14B (overall average: 0.927)
stands out significantly compared to other model pairs.

velopment efforts from different organizations
with distinct training infrastructures, datasets,
and optimization strategies.

4.3 Quantitative Correlation Analysis

To provide rigorous quantitative assessment of the
observed similarities, we computed comprehensive
correlation matrices across multiple models. Fig-
ure 2 focuses on three key models: Qwen3-30A3B,
Pangu, and Qwen2.5-14B, presenting correlation
coefficients for each attention matrix type sepa-
rately. The results reveal remarkable patterns that
strongly support our lineage hypothesis. Pangu
and Qwen2.5-14B achieve correlation coefficients
of 0.867 for Q projection, 0.928 for K projection,
0.939 for V projection, and 0.973 for O projection.
The progression from Q to O projections shows
increasing correlation, which is particularly signifi-
cant because output projections typically undergo
more substantial modifications during continued
training and fine-tuning processes.

Figure 3 extends this analysis to a compre-

hensive twelve-model comparison matrix, provid-
ing broader context for interpreting the Pangu-
Qwen2.5-14B correlation. The heatmaps reveal
that most inter-model correlations fall within the
0.3-0.7 range, with even closely related models
rarely exceeding 0.8. Within the Qwen family it-
self, we observe correlations ranging from 0.4 to
0.9, reflecting the natural variation expected even
among models sharing training infrastructure and
methodologies.

4.4 Validation Through Known Model
Lineages

To establish the reliability and sensitivity of our
fingerprinting methodology, we examined several
documented cases of model derivation where the
lineage relationships are publicly known and veri-
fied. Figure 4 analyzes Llama-3.1-Nemotron-70B-
Instruct, which NVIDIA developed through super-
vised fine-tuning of Meta’s Llama-3.1-70B base
model. Despite extensive instruction tuning and
safety alignment, the attention parameter distribu-
tion curves remain virtually identical between the
base and derived models. Figure 5 examines mod-
els derived from Qwen2.5-7B through various com-
munity fine-tuning efforts. OpenR1-Qwen-7B and
OpenThinker3-7B represent different fine-tuning
approaches focusing on reasoning capabilities and
chain-of-thought optimization respectively. The
results show remarkable consistency in attention
parameter distributions despite these divergent fine-
tuning objectives.

Figure 6 provides perhaps the most relevant val-
idation case for understanding the Pangu-Qwen
relationship. Qwen1.5-MoE-A2.7B was created
through a documented upcycling process that con-
verted the dense Qwen-1.8B model into a mixture-
of-experts architecture. Despite substantial archi-
tectural modifications, the attention parameter dis-
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Figure 3: Comprehensive correlation analysis across twelve models from various families. The heatmaps show that
most inter-model correlations fall within 0.3-0.7 range, with the Pangu-Qwen2.5-14B correlation representing a
clear outlier.

tributions maintain strong similarities, directly par-
alleling the Pangu situation.

4.5 Feed-Forward Network Analysis

To strengthen our analysis beyond attention
mechanisms, we extended the investigation to
feed-forward network (FFN) parameters. Fig-
ure 7 presents the comparative analysis between
Qwen2.5-14B and Qwen2-57B-A14B across the
three FFN projection types. Despite both models
belonging to the Qwen family, they exhibit substan-
tial differences in their FFN parameter distributions,
establishing the expected level of variation between
independently developed models. Figure 8 presents
a stark contrast to the intra-family variation. Pangu
and Qwen2.5-14B display remarkably similar FFN
parameter distributions across all three projection
types, despite their fundamental architectural dif-
ferences. The probability of such identical patterns
arising independently between a MoE and dense
model is extremely low, providing compelling ev-
idence for direct lineage through upcycling. We
notice that Pangu Pro MoE use a different tokenizer
with Qwen models. We guess that they may ran-

domly initialized the embeddings of mismatched
tokens.

The technical documentation accompanying
Pangu Pro MoE claims training on 13 trillion to-
kens, representing one of the most extensive (con-
tinued) training efforts documented in the literature.
Our findings demonstrate that even such extensive
continued pre-training fails to erase the intrinsic pa-
rameter distribution fingerprints inherited from the
base model. This robustness validates our method-
ology’s effectiveness for intellectual property pro-
tection and makes it particularly valuable in sce-
narios where traditional watermarking approaches
might be vulnerable to continued training attacks.

5 Discussion

5.1 Limitations

While our fingerprinting methodology demon-
strates strong performance across the examined
models, several limitations must be acknowledged
that may affect its applicability and reliability in
certain scenarios. Our approach exhibits scale-
dependent effectiveness, with detection capabilities
generally improving for larger models. The statis-
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Figure 4: Attention parameter distribution comparison between Llama-3.1-70B and its fine-tuned derivative Llama-
3.1-Nemotron-70B-Instruct. The nearly identical curves validate our methodology’s ability to detect known lineage
relationships.
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Figure 5: Validation analysis of models derived from Qwen2.5-7B through different fine-tuning approaches
(OpenR1-Qwen-7B and OpenThinker3-7B). Despite divergent fine-tuning objectives, the models maintain consistent
distributional signatures with their base model.
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Figure 6: Analysis of Qwen1.5-MoE-A2.7B, which was created by upcycling Qwen-1.8B into a mixture-of-experts
architecture. The preserved distributional patterns despite architectural transformation validate our methodology for
detecting upcycling relationships.
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Figure 7: Feed-forward network parameter distribution comparison between two Qwen family models (Qwen2.5-
14B and Qwen2-57B-A14B). Despite sharing organizational infrastructure, the models exhibit substantial differences
across gate, up, and down projections.
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Figure 8: Feed-forward network parameter distribution comparison between Pangu and Qwen2.5-14B. The remark-
able similarity across all projection types is extraordinary given their different architectures (MoE vs. dense) and
supposed independent development.

tical signatures we rely upon become more robust
and distinctive as model size increases, primarily
due to the larger number of parameters providing
richer distributional information. For models with
billions of parameters, such as those examined in
our study, the attention and feed-forward parame-
ter distributions contain sufficient statistical power
to enable reliable detection. However, for smaller
models with fewer than one billion parameters, the
effectiveness of our method is not guaranteed.

The fundamental issue stems from the limited
statistical sample size in smaller models. With
fewer parameters per attention matrix, the com-
puted standard deviations may be more susceptible
to random variations and optimization noise, poten-
tially leading to less stable fingerprints. Addition-
ally, smaller models may exhibit more volatile pa-
rameter distributions during training, making it dif-
ficult to distinguish between genuine lineage rela-
tionships and coincidental similarities arising from
convergent optimization dynamics. This limitation
is particularly relevant for edge deployment models,
mobile-optimized variants, and early-stage exper-
imental models that often operate in the millions
rather than billions of parameter range. For such
models, our methodology should be applied with
caution, and additional validation through comple-
mentary techniques may be necessary to establish
reliable lineage detection.

5.2 Broader Impacts
The intense competition in AI has created signif-
icant pressure for companies to rapidly demon-
strate competitive model performance as evidence
of their technical capabilities, often leading to com-
pressed development timelines that may conflict

with proper intellectual property practices. In
this high-stakes environment, organizations fac-
ing geopolitical constraints or resource limitations
may be incentivized to leverage existing founda-
tion models rather than investing in lengthy from-
scratch development, potentially bypassing licens-
ing requirements or attribution standards in pursuit
of market positioning advantages.

In this context, the potential derivation of
Huawei’s Pangu Pro MoE model from Qwen-2.5
14B must be understood within the broader con-
text of Huawei’s strategic positioning in the global
AI hardware and software ecosystem. As a com-
pany facing significant restrictions on access to
advanced semiconductor technologies and interna-
tional AI supply chains, Huawei has been com-
pelled to pursue alternative pathways to maintain
competitiveness in the AI market, particularly in
demonstrating the capabilities of its proprietary
hardware platforms.

The evidence of Huawei’s potential appropria-
tion of Qwen’s technology extends beyond mere
model similarities to encompass serious concerns
about the integrity of technical documentation. The
substantial overlap between Huawei’s and Qwen’s
model parameters suggests not only unauthorized
use of the underlying model but also potential fab-
rication in technical reporting. This pattern of
behavior indicates a systematic approach to misrep-
resenting the originality and development process
of the Pangu Pro MoE model. Such practices un-
dermine the fundamental principles of scientific
integrity and technological transparency that are es-
sential for maintaining trust within the AI research
community. The deliberate obfuscation of model



origins through misleading technical reports repre-
sents a particularly concerning form of intellectual
property violation that goes beyond simple unau-
thorized use to encompass academic misconduct.

In fact, core contributors of this model are prob-
ably aware of their misconduct, but this still ridicu-
lously happens in an open-source model. From a
business strategy perspective, the pressure to show-
case competitive AI capabilities on Huawei’s As-
cend chips and other proprietary hardware may
have created incentives for accelerated model devel-
opment timelines. Training large language models
from scratch requires not only substantial compu-
tational resources but also significant time invest-
ments that may conflict with market pressures to
demonstrate hardware capabilities quickly. Thus,
leveraging existing high-quality foundation models
as starting points for further development could
be viewed as a pragmatic approach to rapidly
achieving competitive performance benchmarks.
However, this strategic imperative raises important
questions about the balance between competitive
pressures and intellectual property respect. While
the desire to demonstrate hardware capabilities is
understandable from a business perspective, the
means by which these demonstrations are achieved
must align with established norms of intellectual
property protection and academic integrity. The AI
industry’s rapid pace of development should not
come at the expense of fundamental principles of
attribution and fair use.

Fortunately, the authentication methodology pre-
sented in this work has significant implications for
the broader AI industry and research community.
By providing a systematic framework for detecting
potential model derivation through simple analy-
sis, our approach offers practical tools for protect-
ing intellectual property rights in an increasingly
complex AI landscape. The methodology’s abil-
ity to identify subtle signs of unauthorized model
adaptation could serve as a deterrent against future
instances of model appropriation while providing
legal and technical evidence when violations occur.
Furthermore, the development of such authentica-
tion techniques promotes greater transparency and
accountability in AI model development, encourag-
ing companies to properly attribute their work and
respect existing intellectual property. As the AI
industry continues to mature, the widespread adop-
tion of similar authentication frameworks could
help establish a more trustworthy and fair com-
petitive environment where innovation is properly

recognized and protected. The impact extends be-
yond individual cases of potential infringement to
encompass broader questions of how the AI com-
munity can maintain scientific integrity while fos-
tering continued innovation and competition.

6 Conclusion

This work introduces a robust fingerprinting
methodology for large language models based on
intrinsic parameter distribution characteristics, ad-
dressing critical intellectual property challenges
in the rapidly evolving LLM landscape. Our ap-
proach leverages the statistical signatures of atten-
tion mechanism parameters, which remain stable
even after extensive continued training and archi-
tectural modifications. Through comprehensive
experimental validation across multiple model fam-
ilies, we demonstrate that these distributional fin-
gerprints can reliably detect model lineage rela-
tionships with high accuracy. Most significantly,
our investigation reveals compelling evidence that
Huawei’s Pangu Pro MoE model appears to be de-
rived from Qwen-2.5 14B through upcycling tech-
niques, as indicated by extraordinarily high cor-
relation coefficients (0.927 overall average) that
far exceed typical inter-model similarities. This
finding not only highlights potential cases of model
plagiarism in the current AI industry but also under-
scores the critical importance of developing robust
authentication methods for protecting intellectual
property rights. The persistence of these statistical
signatures through claimed training on 15 trillion
tokens demonstrates the fundamental robustness of
our approach, making it a valuable tool for main-
taining fair competition and ensuring proper attri-
bution in large-scale model development.
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